Popular Posts

Monday, September 27, 2010

TEORI PEMBELAJARAN DAN MODEL PENGAJARAN

teori behaviorisme


** This section on behaviorism is largely a synopsis of information from Paul Saettler's book,
, (1990).
The History of
American Educational Technology
In Paul Saettler's book , he states that behaviorism did nothave an impact on educational technology until the 1960s, which was the time that behaviorism actually beganto decrease in popularity in American psychology. Saettler identified six areas thatdemonstrate the impact ofbehaviorism on Educational Technology in America: the movement; thephase; the movement; approaches,and the to instruction.

Teaching Machines and Programmed Instruction Movement
Although the elder Sophists, Comenius, Herbart and Montessori used the concept of programmed instruction
in their repertoire, B.F. Skinner is the most current and probably best known advocate of teaching machines
and programmed learning. Contributors to this movement include the following:
Pressey - introduced a multiple-choice machine at the 1925 American Psychological Association
meeting.
Peterson - a former student of Pressey's who developed "chemosheets" in which the learner checked
their answers with a chemical-dipped swab.
W.W.II - devises called "phase checks", constructed in the 1940s and 1950s, taught and tested such
skills and dissassembly-assembly of equipment.
Crowder - designed a branched style of programming for the US Air force in the 1950s to train
troubleshooters to find malfunctions in electronic equipment.
Skinner - based on operant conditioning Skinner's teaching machine required the learner to complete or
answer a question and then receive feedback on the correctness of the response. Skinner demonstrated
his machine in 1954.
(Saettler, 1990)
Early Use of Programmed Instruction
After experimental use of programmed instruction in the 1920s and 1930s, B. F. Skinner and J.G. Holland first
used programmed instruction in behavioral psychology courses at Harvard in the late 1950s. Use of
programmed instruction appeared in elementary and secondary schools around the same time. Much of the
programmed instruction in American schools was used with individuals or small groups of students and was
more often used in junior high schools than senior or elementary schools (Saettler, 1990).
Early use of programmed instruction tended to concentrate on the development of hardware rather than course
content. Concerned developers moved away from hardware development to programs based on analysis of
learning and instruction based on learning theory. Despite these changes, programmed learning died out in the
later part of the 1960s because it did not appear to live up to its original claims (Saettler, 1990).
Individualized Approaches to Instruction
Similar to programmed learning and teaching machines individualized instruction began in the early 1900s,
and was revived in the 1960s. The Keller Plan, Individually Prescribed Instruction, Program for Learning in
Accordance with Needs, and Individually Guided Education are all examples of individualized instruction in
the U.S. (Saettler, 1990).
Keller Plan (1963)
Developed by F.S. Keller, a colleague of Skinner, the Keller plan was used for university college
classes.
Main features of Keller Plan
individually paced.
mastery learning.
lectures and demonstrations motivational rather than critical information.
use of proctors which permitted testing, immediate scoring, tutoring, personal-social aspect of
educational process.
(Saettler, 1990)
Individually Prescribed Instruction (IPI) (1964)
Developed by Learning Research and Development Center of the University of Pitsburgh.
Lasted into the 1970s when it lost funding and its use dwindled
Main features of IPI:
prepared units.
behavioral objectives.
planned instructional sequences.
used for reading, math and science.
included pretest and posttest for each unit.
materials continually evaluated and upgraded to meet behavioral objectives.
(Saettler, 1990)
Program for Learning in Accordance with Needs (PLAN) (1967)
Headed by Jon C. Flanagan, PLAN was developed under sponsorship of American Institutes for
Research (AIR), Westinghouse Learning Corporation and fourteen U.S. School districts.
Abandoned in late 1970s because of upgrading costs
Main features of PLAN
schools selected items from about 6,000 behavioral objectives.
each instructional module took about two weeks instruction and were made up of approximately.
five objectives.
mastery learning.
remedial learning plus retesting.
(Saettler, 1990)
Computer-Assisted Instruction (CAI)
Computer-assisted instruction was first used in education and training during the 1950s. Early work was done
by IBM and such people as Gordon Pask, and O.M. Moore, but CAI grew rapidly in the 1960s when federal
funding for research and development in education and industrial laboratories was implemented. The U.S.
government wanted to determine the possible effectiveness of computer-assisted instruction, so they developed
two competing companies, (Control Data Corporation and Mitre Corporation) who came up with the PLATO
and TICCIT projects. Despite money and research, by the mid seventies it was apparent that CAI was not
going to be the success that people had believed. Some of the reasons are:
CAI had been oversold and could not deliver.
lack of support from certain sectors.
technical problems in implementation.
lack of quality software.
high cost.
Computer-assisted instruction was very much drill-and-practice - controlled by the program developer rather
than the learner. Little branching of instruction was implemented although TICCIT did allow the learner to
determine the sequence of instruction or to skip certain topics.
(Saettler, 1990)


http://www.scribd.com/doc/27153977/Teori-Behaviorism-Atau-Perlakuan
http://www.sil.org/lingualinks/literacy/implementaliteracyprogram/BehavioristTheoriesOfLearning.htm

teori konstruktivisme


The shift of instructional design from behaviorism to cognitivism was not as dramatic as the move into
constructivism appears to be, since behaviorism and cognitivism are both objective in nature. Behaviorism and
cognitivism both support the practice of analyzing a task and breaking it down into manageable chunks,
establishing objectives, and measuring performance based on those objectives. Constructivism, on the other
hand, promotes a more open-ended learning experience where the methods and results of learning are not
easily measured and may not be the same for each learner.
While behaviorism and constructivism are very different theoretical perspectives, cognitivism shares some
similarities with constructivism. An example of their compatibility is the fact that they share the analogy of
comparing the processes of the mind to that of a computer. Consider the following statement by Perkins:
"...information processing models have spawned the computer model of the mind as an information
processor. Constructivism has added that this information processor must be seen as not just shuffling
data, but wielding it flexibly during learning -- making hypotheses, testing tentative interpretations, and
so on." (Perkins, 1991, p.21 in Schwier, 1998 ).
Other examples of the link between cognitive theory and constructivism are:
schema theory (Spiro, et al, 1991, in Schwier, 1998)
connectionism (Bereiter, 1991, in Schwier, 1998)
hypermedia (Tolhurst, 1992, in Schwier, 1998)
multimedia (Dede, 1992, in Schwier, 1998)
Despite these similarities between cognitivism and constructivism, the objective side of cognitivism supported
the use of models to be used in the systems approach of instructional design. Constructivism is not compatible
with the present systems approach to instructional design, as Jonassen points out :
"The conundrum that constructivism poses for instructional designers, however, is that if each individual
is responsible for knowledge construction, how can we as designers determine and insure a common set
of outcomes for leaning, as we have been taught to do?" (Jonasson, [On-line])
In the same article, Jonassen (Jonasson, [On-line]) lists the following implications of constructivism for
instructional design:
"...purposeful knowledge construction may be facilitated by learning environments which:
Provide multiple representations of reality - avoid oversimplification of instruction by by representing
the natural complexity of the world
Present authentic tasks - contextualize
Provide real-world, case-based learning environments, rather than pre-determined instructional
sequences
Foster reflective practice
Enable context- and content-dependent knowledge construction
Support collaborative construction of knowledge through social negotiation, not competition among
learners for recognition
"Although we believe that constructivism is not a prescriptive theory of instruction, it should be possible
to provide more explicit guidelines on how to design learning environments that foster constructivist
learning"
Jonassen points out that the difference between constructivist and objectivist, (behavioral and cognitive),
instructional design is that objective design has a predetermined outcome and intervenes in the learning process
to map a pre-determined concept of reality into the learner's mind, while constructivism maintains that because
learning outcomes are not always predictable, instruction should foster, not control, learning. With this in mind,
Jonassen looks at the commonalties among constructivist approaches to learning to suggest a "model" for
designing constructivist learning environments.
"...a constructivist design process should be concerned with designing environments which support the
construction of knowledge, which ..."
Is Based on Internal Negotiation
a process of articulating mental models, using those models to explain, predict, and infer, and
reflecting on their utility (Piaget's accommodation, Norman and Rumelhart's tuning and
restructuring.)
Is Based on Social Negotiation
a process of sharing a reality with others using the same or similar processes to those used in
internal negotiation
Is Facilitated by Exploration of Real World Environments and Intervention of New Environments
processes that are regulated by each individual's intentions, needs, and/or expectations
Results in Mental Models and provides Meaningful, Authentic Contexts for Learning and Using the
Constructed Knowledge
should be supported by case-based problems which have been derived from and situated in the
real world with all of its uncertainty and complexity and based on authentic realife practice
Requires an Understanding of its Own Thinking Process and Problem Solving Methods
problems in one context are different from problems in other contexts
Modeled for Learners by Skilled Performers but Not Necessarily Expert Performers
Requires Collaboration Among Learners and With the Teacher
the teacher is more of a coach or mentor than a purveyor of knowledge
Provides an Intellectual Toolkit to Facilitate an Internal Negotiation Necessary for Building Mental
Models
(Jonasson, [On-line])
The technological advances of the 1980s and 1990s have enabled designers to move toward a more
constructivist approach to design of instruction. One of the most useful tools for the constructivist designer is
hypertext and hypermedia because it allows for a branched design rather than a linear format of instruction.
Hyperlinks allow for learner control which is crucial to constructivist learning; however, there is some concerns
over the novice learner becoming "lost" in a sea of hypermedia. To address this concern, Jonassen and
McAlleese (Jonnassen & McAlleese, [On-line]) note that each phase of knowledge acquisition requires
different types of learning and that initial knowledge acquisition is perhaps best served by classical instruction
with predetermined learning outcomes, sequenced instructional interaction and criterion-referenced evaluation
while the more advanced second phase of knowledge acquisition is more suited to a constructivist
environment.
If a novice learner is unable to establish an "anchor" in a hypermedia environment they may wander aimlessly
through hypermedia becoming completely disoriented. Reigeluth and Chung suggest a prescriptive system
which advocates increased learner control. In this method, students have some background knowledge and
have been given some instruction in developing their own metacognitive strategies and have some way to
return along the path they have taken, should they become "lost". (Davidson, 1998)
Most literature on constructivist design suggests that learners should not simply be let loose in a hypermedia or
hypertext environment, but that a mix of old and new (objective and constructive) instruction/learning design
be implemented. Davidson's (1998) article, suggesting a criteria for hypermedia learning based on an
"exploration of relevant learning theories", is an example of this method.
Having noted the eclectic nature of instructional design, it is only fair to point out that not all theorists advocate
a "mix and match" strategy for instructional design. Bednar, Cunningham, Duffy and Perry wrote an article
that challenges the eclectic nature if instructional systems design by pointing out that "...abstracting concepts
and strategies from the theoretical position that spawned then strips them of their meaning." They question
objectivist epistemology completely and have adopted what they consider a constructivist approach to
instructional design. In the article they compare the traditional approaches of analysis, synthesis, and evaluation
to that of a constructivist approach. (Bednar, Cunningham, Duffy & Perry, 1995

http://www.docstoc.com/docs/22503694/Teori-Konstruktivisme

teori kognitif

Although cognitive psychology emerged in the late 1950s and began to take over as the dominant theory of
learning, it wasn't until the late 1970s that cognitive science began to have its influence on instructional design.
Cognitive science began a shift from behavioristic practices which emphasised external behavior, to a concern
with the internal mental processes of the mind and how they could be utilized in promoting effective learning.
The design models that had been developed in the behaviorist tradition were not simply tossed out, but instead
the "task analysis" and "learner analysis" parts of the models were embellished. The new models addressed
component processes of learning such as knowledge coding and representation, information storage and
retrieval as well as the incorporation and integration of new knowledge with previous information (Saettler,
1990). Because Cognitivism and Behaviorism are both governed by an objective view of the nature of
knowledge and what it means to know something, the transition from behavioral instructional design principles
to those of a cognitive style was not entirely difficult. The goal of instruction remained the communication or
transfer of knowledge to learners in the most efficient, effective manner possible (Bednar et al., in Anglin,
1995). For example, the breaking down of a task into small steps works for a behaviorist who is trying to find
the most efficient and fail proof method of shaping a learner's behavior. The cognitive scientist would analyze
a task, break it down into smaller steps or chunks and use that information to develop instruction that moves
from simple to complex building on prior schema.
The influence of cognitive science in instructional design is evidenced by the use of advance organizers,
mnemonic devices, metaphors, chunking into meaningful parts and the careful organization of instructional
materials from simple to complex.
Cognitivism and Computer-Based Instruction
Computers process information in a similar fashion to how cognitive scientists believe humans process
information: receive, store and retrieve. This analogy makes the possibility of programming a computer to
"think" like a person conceivable, i.e.. artificial intelligence.
Artificial intelligence involve the computer working to supply appropriate responses to student input from the
computer's data base. A trouble-shooting programs is one example of these programs. Below is a list of some
programs and their intended use:
SCHOLAR - teaches facts about South American geography in a Socratic method
PUFF - diagnoses medical patients for possible pulmonary disorders
MYCIN - diagnoses blood infections and prescribes possible treatment
DENDRAL - enables a chemist to make an accurate guess about the molecular structure of an unknown
compound
META-DENDRAL - makes up its own molecular fragmentation rules in an attempt to explain sets of
basic data
GUIDION - a derivative of the MYCIN program that gave a student information about a case and
compared their diagnosis with what MYCIN would suggest
SOPIE - helps engineers troubleshoot electronic equipment problems
BUGGY - allows teachers to diagnose causes for student mathematical errors
LOGO - designed to help children learn to program a computer
Davis' math programs for the PLATO system - to encourage mathematical development through
discovery
(Saettler, 1990)


http://www.scribd.com/doc/5517475/TEORI-PERKEMBANGAN-KOGNITIF

KAEDAH PENGAJARAN

Kaedah Pengajaran dan Pembelajaran
Pendekatan pengajaran dan pembelajaran boleh dilaksanakan melalui pelbagaikaedah pengajaran dan pembelajaran seperti eksperimen, perbincanga, simulasi, projek, lawatan dan kajian masa depan.
Dalam kurikulum ini, cadangan kaedah pengajaran dan pembelajaran untuk mencapai objektif pengajaran yang tertentu dinyatakan secara eksplisit dalam bentuk aktiviti pembeelajaran.
Walau bagaimanapun, guru boleh mengubah suai cadnagna aktiviti pembelajaran jika perlu.
Kaedah pengajaran dan pembelajaran yang pelbagai dapat meningkatkan minat murid terhadap sains. pelajaran sains yang tidak menarik akan membosankan pelajar. 
Guru perlu prihatin terhadap pelbagai kecerdasan di kalangan pelajarmasing-masing. kaedah dan aktivit yang yang berbeza perlu dirancang untukmurid murid yang berbeza kecerdasan. Contoh kecerdasan ini ialah visual dan ruang, verbal linguistik, muzik dan irama, logikal matematik, kinestatik, perhubungan antara individu, perhubungan dengan diri sendiri, perhubungan antara insan dengan penciptanya dan pemahaman tentang alam sekitar.
Berikut diberi penerangan ringkas mengenai kaedah-kaedah ini.
Ekseperimen
kaedah eksperimen adalah satu kaedah yang lazim dijalankan dalam pelajaran sains. Murid menguji hipotesis secara penyiasatan untuk menemuikonsep atau idea sains yang tertentu. kaedah saintifik digunakan semasa eksperimen.
Menjalankan eksperimen menggunakan kemahiran berfikir, kemahiran proses dan kemahiran manipulatif.
Secara kebiasaan, langkah yang diikuti semasa menjalankan eksperimen adalah seperti berikut:
1. Mengenal pasti masalah
2. Membuat hipothesis
3. Merancang eksperimen:
- mengawal pemboleh ubah.
- menentukan peralatan dan bahan yang diperlukan
- menentulkan langkah menjalanakan eksperimen
- kaedah mengumpulkan data dan menganalisis data
4. Melakukan eksperimen
5. Mengumpul data
6. Menganalisis data
7. Mentafsirkan data
8. Membuat kesimpulan
9. Membuat laporan
Dalam konsep pelancongan pelajar, adalah dicadangkan selain daripada eksperimen yang dibimbing oleh guru murid diberi peluang mereka bentuk eksperimen, iaitu mereka sendiri yang merangka cara eksperimen yang berkenaan boleh dijalankan, data yang boleh diukur dan bagaimana menganalisis data serta bagaimana membentangkan hasil eksperimen mereka.
Perbincangan
Aktiviti di mana murid menyoal dan mengemukakan pendapat berlandaskan dalil atau alasan yang sahih. Semasa perbincangan, murid perlu mempunyai fikiran terbuka untuk menerima pendapat orang lain. perbincangan perlu dijalankan semasa dan sebelum sesuatu aktiviti.
Projek
Aktiviti yang dijalankan oleh individu atau sekumpulan murid untuk mencapai sesuatu tujuan tertentu dan mengambil masa yang panjang serrta menjangkau waktu pembelajaran yang formal.
Murid dikehendaki mengenal pasti kaedah untuk menyelesaiakan masalah yang dikemukakan dan seterusnya merancang keseluruhan projek. Hasil projek boleh dalam bentuk laporan, artifak atau lain-lain perlu dibentangkan di hadapan guru dan para pelajar lain.
Lawatan
Pembelajaran sains tidak hanya terhad dalam sekolah sahaja. Pembelajaran sains melalui lawatan ke tempat seperti zoo, muzium, pusat sains, institusi penyelidikan, paya bakau dan kilang boleh menjadikan pembelajaran lebih berkesan, menyeronokkan dan bermakna.
Untuk mengoptimumkan pembelajaran melalui lawatan, ia mesti dirancang rapi dengan para pelajar perlu menjalankan aktiviti atau melaksanakan tugasan semasa lawatan. Perbincangan selepas lawatan perlu diadakan. Kajian lapangan yang sering dijalankan dalam tajuk ekologi merupakan salah satu contoh keadaan ini.
Kajian masa depan
Murid menggunakan pemikiran kritis dan kreatif untuk meninjau perubahan keadaan daripada masa lalu ke sekarang dan meramalkan keadaan pada masa depan.pedagogi ini berpusatkan murid dan menggabungjalinkan pelbagai bidang seperti pendidikan moral, pendidikan alam sekitar. Nilai murni seperti ini bertanggungjawab dan bekerjasama dipupuk melalui kaedah ini.
Penyelesaian masalah
Penyelesaian masalah adalah satu kaedah yang melibatkan murid secara aktif untuk membuat keputusan atau untuk mencapai satu sasaran tertentu. Semasa penyelesaian masalah, aktiviti seperti simulasi, perbincangan dan eksperimen boleh dijalankan. Secara umumnya, penyelesaian masalah melibatkan langkah berikut:
1. Kenal pasti dan faham masalah
2. Jelaskan masalah
3. Cari alternatif penyelesaian masalah.
4. Lakukan operasi penyelesaian.
5. Nilaikan penyelesaian

Saturday, September 25, 2010

learning theories

Learning Theories 
 What is the difference between the learning theories in terms of the practice of instructional design? 
-approach more easily achieved than another? To address this, one may consider that cognitive theory is the
-dominant theory in instructional design and many of the instructional strategies advocated and utilized by
-behaviorists are also used by cognitivists, but for different reasons. For example, behaviorists assess learners to
-determine a starting point for instruction, while cognitivists look at the learner to determine their predisposition
-to learning (Ertmer & Newby, 1993). With this in mind, the practice of instructional design can be viewed from
-a behaviorist/cognitivist approach as opposed to a constructivist approach.
-When designing from a behaviorist/cognitivist stance, the designer analyzes the situation and sets a goal.
-Individual tasks are broken down and learning objectives are developed. Evaluation consists of determining
-whether the criteria for the objectives has been met. In this approach the designer decides what is important for the learner to know and attempts to transfer that knowledge to the learner. The learning package is somewhat of a closed system, since although it may allow for some branching and remediation, the learner is still confined to the designer's "world".
-To design from a constructivist approach requires that the designer produces a product that is much more
-facilitative in nature than prescriptive. The content is not prespecified, direction is determined by the learner and assessment is much more subjective because it does not depend on specific quantitative criteria, but rather the process and self-evaluation of the learner. The standard pencil-and-paper tests of mastery learning are not used in constructive design; instead, evaluation is based on notes, early drafts, final products and journals.
(Assessment [On-line])
-Because of the divergent, subjective nature of constructive learning, it is easier for a designer to work from the systems, and thus the objective approach to instructional design. That is not to say that classical instructional design techniques are better than constructive design, but it is easier, less time consuming and most likely less expensive to design within a "closed system" rather than an "open" one. Perhaps there is some truth in the statement that "Constructivism is a 'learning theory', more than a 'teaching approach'." (Wilkinson, 1995)
-Learning Theories - Some Strengths and Weaknesses
-What are the perceived strengths and weaknesses of using certain theoretical approaches to instructional design?
Behaviorism
-Weakness -the learner may find themselves in a situation where the stimulus for the correct response does not occur, therefore the learner cannot respond. - A worker who has been conditioned to respond to a certain cue at work stops production when an anomaly occurs because they do not understand the system.
-Strength - the learner is focused on a clear goal and can respond automatically to the cues of that goal. -
-W.W.II pilots were conditioned to react to silhouettes of enemy planes, a response which one would hope became automatic.
Cognitivism
-Weakness - the learner learns a way to accomplish a task, but it may not be the best way, or suited to the learner or the situation. For example, logging onto the internet on one computer may not be the same as logging in on another computer.
-Strength - the goal is to train learners to do a task the same way to enable consistency. - Logging onto and off of a workplace computer is the same for all employees; it may be important do an exact routine to avoid problems.
Constructivism
-Weakness - in a situation where conformity is essential divergent thinking and action may cause problems.
-Imagine the fun Revenue Canada would have if every person decided to report their taxes in their own way
-although, there probably are some very "constructive" approaches used within the system we have.
-Strength - because the learner is able to interpret multiple realities, the learner is better able to deal with real life situations. If a learner can problem solve, they may better apply their existing knowledge to a novel situation.
(Schuman, 1996)
-Is There One Best Learning Theory for Instructional Design?
-Why bother with Theory at all?
-A solid foundation in learning theory is an essential element in the preparation of ISD professionals because it permeates all dimensions of ISD (Shiffman, 1995). Depending on the learners and situation, different learning theories may apply. The instructional designer must understand the strengths and weaknesses of each learning theory to optimize their use in appropriate instructional design strategy. Recipes contained in ID theories may have value for novice designers (Wilson, 1997), who lack the experience and expertise of veteran designers.
-Theories are useful because they open our eyes to other possibilities and ways of seeing the world. Whether werealize it or not, the best design decisions are most certainly based on our knowledge of learning theories.
-An Eclectic Approach to Theory in Instructional Design
-The function of ID is more of an application of theory, rather than a theory itself. Trying to tie Instructional
-Design to one particular theory is like school vs. the real world. What we learn in a school environment does not always match what is out there in the real world, just as the prescriptions of theory do not always apply in practice, (the real world). From a pragmatic point of view, instructional designers find what works and use it.
What Works and How Can We Use It?
-Behaviorism, cognitivism and constructivism - what works where and how do we knit everything together to at least give ourselves some focus in our approach to instructional design? -First of all we do not need to abandon the systems approach but we must modify it to accommodate constructivist values. We must allow circumstances surrounding the learning situation to help us decide which approach to learning is most appropriate.
-It is necessary to realize that some learning problems require highly prescriptive solutions, whereas others are more suited to learner control of the environment. (Schwier, 1995)
Jonnassen in ([On-line]) identified the following types of learning and matched them with what he believes to be appropriate learning theory approaches.
Manifesto for a Constructive Approach to Technology in Higher Education
1. Introductory Learning - learners have very little directly transferable prior knowledge about a
skill or content area. They are at the initial stages of schema assembly and integration. At this stage classical instructional design is most suitable because it is predetermined, constrained, sequential and criterion-referenced. The learner can develop some anchors for further exploration.
2. Advanced Knowledge Acquisition - follows introductory knowledge and precedes expert
knowledge. At this point constructivist approaches may be introduced.
3. Expertise is the final stage of knowledge acquisition. In this stage the learner is able to make
intelligent decisions within the learning environment. A constructivist approach would work well
in this case.
-Having pointed out the different levels of learning, Jonassen stresses that it is still important to consider the context before recommending any specific methodology.
-Reigeluth's Elaboration Theory which organizes instruction in increasing order of complexity and moves from prerequisite learning to learner control may work in the eclectic approach to instructional design, since them learner can be introduced to the main concepts of a course and then move on to more of a self directed studyn that is meaningful to them and their particular context.
-After having compared and contrasted behaviorism, cognitivism and constructivism, Ertmer and Newby (1993) feel that the instructional approach used for novice learners may not be efficiently stimulating for a learner who is familiar with the content. They do not advocate one single learning theory, but stress that instructional strategy and content addressed depend on the level of the learners.
-Similar to Jonassen, they match learning theories with the content to be learned:
... a behavioral approach can effectively facilitate mastery of the content of a
profession (knowing what); are useful in teaching problem
-solving tactics where defined facts and rules are applied in unfamiliar situations
(knowing how); and are especially suited to dealing with ill-defined problems through reflection-in-action. (Ertmer P. & Newby, T., 1993)
cognitive strategies
constructivist strategies
Behavioral
... tasks requiring a low degree of processing (e.g., basic paired associations,
discriminations, rote memorization) seem to be facilitated by strategies most
frequently associated with a behavioral outlook (e.g., stimulus-response, contiguity
of feedback/reinforcement).
Cognitive
Tasks requiring an increased level of processing (e.g., classifications, rule or
procedural executions) are primarily associated with strategies
having a stronger cognitive emphasis (e.g., schematic organization, analogical
reasoning, algorithmic problem solving).
Tasks demanding high levels of processing (e.g., heuristic problem solving,
personal selection and monitoring of cognitive strategies) are frequently
Constructive
est learned with strategies advanced by the constructivist perspective (e.g.,
situated learning, cognitive apprenticeships, social negotiation.
(Ertmer P. & Newby, T., 1993)

Wednesday, September 22, 2010

DEFINISI TEKNOLOGI

DEFINISI TEKNOLOGI
1) Teknologi sebagai proses
-penggunaan pengetahuan sains dan lain-lain cabang ilmu untuk menghasilkan tugasan pembelajaran yang praktikal
- proses kearah penyelesaian masalah menggunakan teknik,kaedah,reka bentuk atau alat yang berkesan dan teruji.
2) teknologi sebagai produk @ bahan
- penghasilan perkakasan dan perisian hasil dari proses-proses teknologi itu sendiri
- contoh: projektor(perkakasan),filem- perisian adalah hasil teknologi.

menurut Saettler(1990)
-Teknologi bukan penggunaan mesin tetapi meliputi teknik penggunaan pengetahuan saintifik.

TEKNOLOGI DALAM PENDIDIKAN
-Gabungan manusia, peralatan,teknik dan peristiwa bertujuan untuk memberi kesan yang baik kepada pendidikan.
- Crowel.1971: teknologi dalam pendidikan adalah penggunaan kemahiran dan teknik moden dalam keperluan latihan yang meliputi kemudahan belajar dengan menggunakan persekitaran setakat mana ianya menimbulkan pembelajaran.
-Seels dan Richey,1994 halaman 1:
'Instructional technology is the theory and practice of design development,utilization,management and evaluation of processes and resources for learning.'
-merupakan sistem yang meliputi alat dan bahan media,organisasi yang digunakan secara terancang bagi menghasilkan kecekapan dalam pengajaran dan keberkesanan pembelajaran.

CIRI-CIRI TEKNOLOGI DALAM PENDIDIKAN

alat yang dapat menjelaskan idea-idea yang kabur dan terangkan isi-isi pelajaran
alat yang besar dan jelas untuk dilihat oleh semua pelajar
  • tulisan dan gambar perlu dipelbagaikan warnanya


  • gunakan bahan yang boleh tahan lama dan boleh disimpan


  • tunjukkan hasil dan kemahiran yang baik sekiranya alat dibuat sendiri


  • KEPENTINGAN TEKNOLOGI DALAM PENGAJARAN DAN PEMBELAJARAN
    • melicinkan pengajaran dan pembelajaran,fokus isi-isi penting kepada topik yang disampaikan
    • jimat masa,tenaga,wang
    • mengelakkan rasa bosan pelajar,kekal minat ,menghiburkan pelajar
    • mengelakkan tidak faham/salah tafsir terhadap konsep melalui deria melihat,mendengar /menyentuh
    • membetulkan kekeliruan/salah tafsir kerana memberi gambaran menyeluruh dan jels sesuatu konsep dan kaitannya dengan kehidupan seharian.
    • melibatkan pelbagai deria .penglibata kaedah mengajar.
    • membantu pelajar mendapat kesan pembelajaran maksimum dengan penggunaan masa minimum.
    • memperkayakan pengalaman pelajar. 

    PRINSIP TEKNOLOGI PENDIDIKAN
    • sebagai alat bantu mengajar-bantu guru mengajar sesuatu topik dengan lebih berkesan
    • digunakan untuk pengajaran bukan hiburan
    • penggunaan mesti dirancang dalam 3 peringkat.
    1. Sebelum kegunaan-rancang masa dan cara bagaimana mengaitkannya dengan topik pengajaran
    2. semasa kegunaan-merancang ulasan dan penekanan aspek-aspek penting yang dapat membantu pembelajaran
    3. selepas kegunaan-merancang aktiviti lanjutan seperti soalan-soalan,kesimpulan dan penilaian
    • dipilih berdasarkan kesesuaian topik,objektif pelajaran,latar belakang pelajar,saiz kelas dan keadaan fizikal kelas.
    • Digunakan untuk mencapai sesuatu objektif pelajaran dan peringkat perkembangan pelajaran samaada pengenalan topik,penerangan konsep,kesimpulan topik pelajaran@penilaian kefahaman terhadap topik.
    • Digunakan mengikut masa yang sesuai-masa dapat merangsang pembelajaran.
    • Digunakan dengan merujuk kepadanya bukan untuk menunjuk-nunjuk.
    • Selepas menggunakannya,tanggalkan supaya tidak ganggu pelajar belajar seterusnya.
    • Setelah tamat pengajaran,pamerkan untuk rujukan kelas di papan buletin khas.

      sejarah perkembangan komputer

      Evolusi era komputer
      Bermula dengan abakus menjadi tetulang kemudian pascaline
      pada tahun 1951.UNIVAC1 merupakan komputer pertama yang diperdagangkan.
      Era komputer moden bermula selepas 50 tahun komputer diperkenalkan.
      ia dibahagi kepada 5 generasi
      1. generasi ke-1 (1942-1959) -Era tiub hampagas
      2. generasi ke-2 (1959-1965) -Era Transistor
      3. generasi ke-3 (1965-1970) -Era Litar Bersepadu
      4. generasi ke-4 (1970-?) -Era Mikrokomputer
      5. generasi ke-5(?)-Era Penyambungan 
       GENERASI PERTAMA
      • Guna tiub hampagas untuk perlitaran,storan data dan suruhan
      • besar,masalah haba yang tinggi dan tidak boleh dipercayai sepenuhnya-pengendalian terganggi dan tidak cekap
      • pengaturcaraa dalam bahasa mesin
      GENERASI KE-2
      • transistor boleg dianggap sebagai satu suis.
      • kelajuan lebih baik dan lebih kecil iaitu melaksanakan satu pengendalian dalam mkrosaat ( 9juta sesaat) dan menyimpan puluhan ribu aksara 
      • boleh dipercayai,padat saiz dan bebas daripada masalah haba.
      •  aturcara -bahasa mesin dan bahasa bersimbol 
      GENERASI KE-3
      • litar bersepadu yang amat kecil dan lebih baik.
      • perantiI/O dapat berkomunikasi dalam jarak jauh melalui talian telefon/komunikasi.
      • imbasan secara terus boleh dilakukan,paparan ala televisyen,mainkan muzik dan input suara yang terhad dengan tindakbalas.
      • keupayaan storan lebih baik-memproses banyak aturcara dalam nanosaat(seribu juta sesaat)dan secra serentak.
      • bahasa paras tinggi. 
      GENERASI KE-4
      • keupayaan lebih baik
      • storan maya
      • CD-ROM
      GENERASI KE-5
      • tidak sama dengan generasi sebelum ini.
      • keupayaan yang terbaik: dengan saiz yang lebih kecil,saiz ingatan meningkat,kelajuan yang pantas,membuat penaakulan,pengiraan kompleks dan lain-lain.,'mesin bertutur'- robotik,ai,sistem pakar dll
      SEKARANG?
      Terdapat pelbagai alat teknologi canggih yang  berasaskan sistem komputer. antaranya,komputer riba dengan pelbagai jenama dan saiz, telefon bimbit yang berfungsi seperti komputer,dan lain-lain lagi.

      Dimana anda boleh temui komputer?
      • Tempat kerja
      • skolah
      • rumah
      • tempat permainan 
      • pusat membeli belah
      • bengkel kereta
      • dalam kenderaan
      APA ITU KOMPUTER?
      komputer merupakan mesin elektronik yang beroperasi di bawah arahan yang tersimpan dalam ingatannya. fungsinya adalah:
      • menrima data
      • manipulasi data mengikut peraturan tertentu
      • mengeluarkan keutusan
      • menyimpan maklulat (keputusan) untuk kegunaan masa hadapan.
      KITARAN PEMPROSESAN MAKLUMAT KOMPUTER
      1. Input - sebarang data atau arahan yang anda masukkan ke dalam komputer
      2. Proses - manipulasi input(data) untuk menjana (output) maklumat
      3. Output - data yang telah diproses menjadi maklumat.
      4. Storan- kawasan yang menyimpan data untuk kegunaan masa depan
      5. komunikasi -kemampuan untuk berkomunikasi dengan komputer yang lain
      JENIS-JENIS KOMPUTER
      Terdapat 6 kategori utama:
      1. komputer peribadi
      2. handheld komputer
      3. perkakasan internet
      4. mid-range server
      5. kerangka utama
      6. superkomputer
      UNSUR-UNSUR 1 SISTEM KOMPUTER
      • perkakasan- peralatan elektronik,elektrik,dan mekanikal yang membentuk sebuah komputer
      • perisian
      • kakitangan
      • tatacara
      PERISIAN
      - satu siri arahan yang memberitahu perkakasan bagaimana untuk melakukan sesuatu kerja
      - 2 jenis perisian:
      •  perisian sistem-sistem pengoperasian dan utiliti
      • perisian aplikasi
      KAEDAH PEMPROSESAN
      2 kaedah pemprosesan
      1. pemprosesan kelompok- data dan urus niaga dikumpulkan sebelum diproses oleh komputer.pemprosesan banyak data adalah kos pemprosesan. contohnya:pemprosesan gaji
      2. pemprosesan saling tindak-data diproses sebaik saja diperolehi. pemprosesan masa-nyata. ia untuk respon/jawapan segera.
      Sejarah perkembangan komputer telah berkembang sejak 6 dekad yang lalu..Sejarah perkembangan komputer ni boleh dibahagikan kepada 4 Generasi…Ia bermula dengan
      –>Abakus atau sempoa dianggap sebagai sejarah komputer terawal. Berasal dari Asia…Banyak digunakan di negara cina dan jepun beribu2 sebelum masihi..Ia digunakan bagi pengiraan dimana sebiji manik atau menggegarkan sempoa mewakili nilai sesuatu pengiraan.
      –>1600 – John Napier telah menemui alogaritma dimana ia langkah pertama dilakukan oleh bangsa eropah dan menghasilkan jadual log pertama [Log Tables] pada tahun 1614.
      –>1620 – Robert Bissaker telah mencipta mistar gelongsor [Slide Rule], pengguna boleh mengira dan menyelesaikan sesuatu pengiraan yang rumit dengan pantas berbanding secara manual.
      –>1642 – Blaise Pascal, satu ahli matematik Perancis dan ahli falsafah, mencipta kalkulator mekanikal digital , dipanggil Pascaline. Tujuan beliau cipta untuk membantu ayahnya, seorang pegawai percukaian di perancis. Walaupun mesin ini boleh melakukan tambahan dan penolakan di semua nombor, ianya mahal dan cuma beliau saja je boleh baiki.
      –>1694 – Gottfriedd Leibnitz telah mecipta kalkulator yang lebih berkesan dari Pascaline…Walaupun pengiraaan yang dihasilkan oleh mesin nie tepat tapi terdapat masalah dan amat sukar bagi menghasilkan mesin ni
      –>1812 – Charles P. Babbage, “Father Of Computer“… Ia adalah titik perubahan di dalam sejarah komputer… Beliau telah merekabentuk sebuah mesin, enjin beza [Different Engine] yang berkuasa wap, berfungsi outomatik dan diperintah oleh satu program arahan tetap. Dalam 1833, Babbage berhenti mengusahakan mesin ini untuk menumpukan pada enjin analisis [Analytical Engine].
      –>1820 – Joseph Jacquard memperkenalkan kad-kad kemasukan atau input utk mesin enjin analitikal [Analytical Engine].
      –>1840 – Augusta Ada. “The First Programmer” mencadangkan bahawa satu sistem perduaan mestilah digunakan untuk tempat penyimpanan kurang daripada satu perpuluhan sistem…
      –>1850 – George Boole membangun “Boolean” logik dimana banyak digunakan dalam rekabentuk litar komputer.
      –>1890 – Dr. Herman Hollerith memperkenalkan elektromekanik [Tabulating Machine] dengan menggunakan kad-kad yang diperkenalkan oleh Joseph Jacquard , kad tebuk memproses data mesin ini digunakan untuk membanci bagi mengumpul maklumat untuk 1890 U.S. Penjadual Hollerith’s telah berjaya dan beliau telah memulakan perniagaan sendiri dan memasarkannya. Pada tahun 1911 Hollerith’s Tabulating Machine Company telah bergabung dgn dua lagi syarikat dan pada 1924 mereka telah menukarkan nama syarikat kepada International Business Machines Corporation [IBM] yang menjadi gergasi dunia komputer pada masa kini.
      –>1906 – tiub vakum direka oleh Ahli fizik Amerika Lee De Hutan.
      –>1939 – Dr. John V Atanasoff dan penolongnya Clifford Berry telah mencipta komputer digit elektronik pertama.
      –>1941 – Konrad Zuse dari Jerman, telah memperkenalkan komputer aturcara pertama direka bagi menyelesaikan persamaan kejuruteraan yang kompleks…Mesin ini, dipanggil Z3, adalah yang pertama sebagai ganti sistem penduan kepda sistem perpuluhan..